

HEYL®PATTERSON

Coal Creek Prototype Fluidized Bed Coal Dryer:

Performance Improvement, Emissions Reduction, and Operating Experience

Charles Bullinger and Mark Ness

Great River Energy, Coal Creek Station Underwood, ND 58576-9659

> **Tony Armor EPRI**

A Touchstone Energy* Cooperative

EPRI Program 66 CoalFleet for Tomorrow: San Francisco, CA February 27, 2007

Introduction

- Coal moisture has a large negative effect on boiler efficiency, station service power and unit heat rate.
- For a 600 MW lignite-fired unit, fuel moisture is responsible for:
 - 9% higher coal flow rate
 - 20 MW of station service power
 - 20% higher flue gas flow rate
 - Increased operating and maintenance cost
- Can a low-temperature waste heat be used to reduce fuel moisture?

Project Goals and Schedule

Goals and Objectives:

- Reduce moisture content of lignite, PRB, and other highmoisture fuels.
- Use waste heat from the power plant.
- Modify existing coal handling systems.
- Increase competitive position of lignite-, PRB-, and other high moisture coal-fired power plants.
- Reduce environmental impact of lignite-, PRB-, and other highmoisture coal-fired power plants
- Project Phases and Schedule:

ENERGY®

Lignite Fuel Enhancement: Incremental Moisture Reduction Project

GREAT RIVER

ENERGY®

Increased
Efficiency
More MW/Ton

Increased Efficiency
Less Flue Gas
Lower Velocity

Less Flue Gas
Lower Velocity
Less Evaporation

Previous Work

- **1997-1998**
 - Preliminary studies and concept development
- **1999**
 - Lignite-drying tests at Coal Creek using low-temperature fixedbed dryer.
- **2000**
 - Coal Creek boiler modeling
 - Laboratory lignite drying tests.
 - Full-scale test burns (20,000 tons of lignite dried using low-temperature air, and burned at Coal Creek).
- **2001**
 - Fluidized bed selected for coal drying
 - Laboratory drying tests at Lehigh University
 - 2002
 - Application filed with DOE under the Clean Coal Power Initiative (CCPI).

Previous Work

2003

- Project selected for negotiation with DOE.
- 2 ton/hr pilot fluidized bed dryer built at Coal Creek with NDIC funding.
- Pilot coal dryer testing at Coal Creek

2004

- Contract signed with DOE (Clean Coal Power Initiative).
- DOE joined partnership under collaborative agreement.
- Design of a prototype coal dryer and associate equipment.

2005

Construction begins of a prototype coal dryer at Coal Creek Unit2.

GREAT RIVER

ENERGY®

2006

- Prototype coal dryer checkout and start-up
- Prototype coal dryer performance testing (in progress)
- Unit performance testing (in progress)
- August: Phase 1 Milestone

Prototype Coal Drying System at Coal Creek

Prototype Coal Dryer

- Maximum capacity 112.5 t/hr.
- Remove approx. ¼ of coal moisture.
 - Dry lignite from 38.5% to 29.5%.
 - Improve HHV from 6,200 to 7,045 BTU/lb
- Fully automated operation, integrated into the plant control system.
 - Four patent applications on dryer design and control filed by GRE.

Prototype Dryer: Unit 2 East

Prototype Dryer Installation

Prototype CDS Checkout, Start-Up, and Operation Summary

- Checkout and "shakedown" in December 2005.
 - No problems
- 1st coal on January 30th 2006.
- 7-hour daily tests
- Inspection on Feb11th,
 - No accumulation of material in the dryer
- Drying to 29.5%
- Segregator optimization Feb 27th to Mar 3rd 2006.
 - Operator training before 24/7 operation
 - Performance testing in March and April 2006.

Prototype Coal Dryer (CD26) Performance

CD26 Performance

Prototype Coal Dryer Performance: March to April, 2006

CD26 Performance

Prototype Coal Dryer Performance: March to April, 2006

Segregation Stream

Unit Performance

Unit Performance: Summary

		Coal Dryer	Coal Dryer		Units of
Parameter	Units	in Service	Out of Service	Change	Change
Gross Power Output	MW	589	590	NC	
Throttle Steam Temperature	Deg. F	988	989	NC	
Reheat Steam Temperature	Deg. F	1,002	1,002	NC	
SHT Spray Flow	klbs/hr	46	52	-6.4	klbs/hr
Total Coal Flow Rate	klbs/hr	953	972	-2.02	%
Dried Coal	% of Total	14.62	0.00		
Stack Flow Rate	kscfm	1,611	1,626	-0.96	%
Specific Pulverizer Work	kJ/klb		4.29	-4.65	%
Total Pulverizer Power	kW	4,057	4,206	-3.53	%
NOx Mass Emissions	lb/hr	1,345	1,470	-8.52	%
SOx Mass Emissions	lb/hr	3,618	3,692	-2.00	%
APH 21 Gas Exit Temperature	Deg. F	353	362	-8.6	Deg. F
APH 22 Gas Exit Temperature	Deg. F	368	377	-9.3	Deg. F
Stack Temperature	Deg. F	180	184	-4.2	Deg. F

Boiler Efficiency Improvement

Test Data

Test Data: Total Mill Power

Prototype Dryer Perfomance Tests: March-April, 2006

Performance Test Results: Boiler Efficiency

Test Data: NO_x Emissions

Prototype Dryer Perfomance Tests: March-April, 2006

Evaporated Coal Moisture Discharged into the Atmosphere

Conclusions

- Prototype coal dryer (CD26) in service at Coal Creek since early spring 2006.
 - No operating issues
 - Nominal coal flow rate 75/t/hr.
- Inlet moisture level reduced by 8.25% Abs.
- Coal flow rate reduction:
 2.0%
- Mill power reduction: 4.5%
- Boiler efficiency improvement: 0.27% Abs.

- NO_x mass emissions reduction: 8.5%
- SO_x mass emissions reduction: 2.0%.

ENERGY

Conclusions

- A 75-115 ton/hr dryer was built and successfully operated at Coal Creek Station.
- The dryer performed as designed with the exception of some air flow restriction which will be corrected.
- The dry coal product produced by the dryer performed in the boiler as expected improving efficiency and reducing emissions.

It is GRE intent to build 4 full-scale dryers and provide Coal Creek Unit 2 with 100% dry lignite. (Budget approved Feb 8th, 2007)

GREAT RIVER ENERGY

Full-Scale dryer location

Top view

Side elevation

Acknowledgments

- This conference paper was prepared with the support of the U.S. DOE, under Award No. DE-FC26-04NT41763.
 - However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author's and do not necessarily reflect the views of the DOE.
- The authors acknowledge and are grateful for the support received from GRE, EPRI, Barr, and Lehigh.
- For further information contact Charlie Bullinger (cbullinger@grenergy.com) or 701-442-7001

